
NAVY
Neural Networks

Ing. Lenka Skanderová, Ph.D.

NAVY – Neural networks

Description and definition

[1]

• Neural network can be defined as a set of algorithms

• The simples neural network perceptron was created in 1958 – by Frank Rosenblatt

• Some literature mention that they are inspired by the brain of mammals (other
literature does not agree)

• Use:
• Classification
• Clustering
• Prediction

NAVY – Neural networks

Perceptron and its parts

• Linear classifier

• Used to solve linearly separable problems

𝑥2

𝑥1

𝑥1

𝑥2

𝑥3

𝑤1

𝑤2

𝑤3

𝑏

𝑦guess
𝑓 ෍𝑥𝑖𝑤𝑖 + 𝑏

NAVY – Neural networks

Perceptron and its parts

𝑥1

𝑥2

𝑥3

𝑤1

𝑤2

𝑤3

𝑏

𝑦guess

• Inputs:
• 𝑥1, 𝑥2, … , 𝑥𝑛

• Weights:
• 𝑤1, 𝑤2, 𝑤𝑛

• Bias:
• 𝑏 to shift the activation

function

• Activation functions

• Guess output

𝑓 ෍𝑥𝑖𝑤𝑖 + 𝑏

NAVY – Neural networks

Some types of activation functions

• Signum

𝑓 𝑥 = 𝑠𝑔𝑛(𝑥)

• Sigmoid

𝑓 𝑥 =
𝑒𝑥

𝑒𝑥 + 1

• ReLU

𝑓 𝑥 = max(0, 𝑥)

• Softplus

𝑓 𝑥 = ln(1 + 𝑒𝑥)

NAVY – Neural networks

Output calculation

𝑥1

𝑥2

𝑥3

𝑤1

𝑤2

𝑤3

𝑓 ෍𝑥𝑖𝑤𝑖 + 𝑏

𝑏

𝑦guess

𝑦𝑔𝑢𝑒𝑠𝑠 = 𝑓 ෍

𝑖=1

𝑛

𝑥𝑖𝑤𝑖 + 𝑏

NAVY – Neural networks

• Perceptron uses supervisor to optimize its weights

• Two phases:
• Training
• Testing

• Training:
• For each input we know the coreect output. Based on this output the weights

are optimized → in this phase the weights are recalculated based on the error,
i.e. difference between the correct and guess output

• Testing:
• For each input we know the corect output. In this phase, the weights are not

optimized. We only test how good the neural network is for data which were
not used for training

Predicted vs. Correct output

NAVY – Neural networks

Training

• Task: Use the perceptron to classify the point into two groups:
• Points lie on the line → 0
• Points lie above the line → 1
• Points lie below the line → −1

• Each point is given by its coordinates [𝑥, 𝑦]
• E.g. 𝐴[1,2], 𝐵 0, 3 , 𝐶[4,15]

• For each point we can calculate the correct output
• 𝐴𝑦 = −1, 𝐵𝑦 = 0, 𝐶𝑦 = 1

• Now we are prepared to train the perceptron 𝑥

𝑦 y = 2x + 3

0

NAVY – Neural networks

Training

𝑥

𝑦 y = 2x + 3

0

𝑃𝑥

𝑃𝑦

𝑤1

𝑤2

𝑓 ෍𝑥𝑖𝑤𝑖 + 𝑏

𝑏

𝑦guess

• All weights are at the beginning of the proces set to the random values
between 0 and 1 or -1 and 1

• Activation function: Signum

NAVY – Neural networks

Training

𝑥

𝑦 y = 2x + 3

0

• The first input is a point 𝐴 1,2 lying below
the line, 𝑦𝐴 = −1

• Initial weights:
𝑤1 = 0.2, 𝑤2 = 0.4, 𝑏 = 0.5

• We will calculate the guess output:
𝑦𝐴𝑔𝑢𝑒𝑠𝑠 = 𝑠𝑔𝑛(𝑥1𝑤1 + 𝑥2𝑤2 + 𝑏)

• Numerically:
𝑦𝐴𝑔𝑢𝑒𝑠𝑠 = 𝑠𝑔𝑛 1 ∗ 0.2 + 2 ∗ 0.4 + 0.5 = 1

NAVY – Neural networks

Training

𝑥

𝑦 y = 2x + 3

0

• Numerically:
𝑦𝐴𝑔𝑢𝑒𝑠𝑠 = 𝑠𝑔𝑛 1 ∗ 0.2 + 2 ∗ 0.4 + 0.5 = 1

𝑦𝐴 = −1

• Calculate the error:
𝐸𝑟𝑟𝑜𝑟 = 𝑦 − 𝑦𝑔𝑢𝑒𝑠𝑠

• Numerically for the point 𝐴:
𝐸𝑟𝑟𝑜𝑟 = −1 − 1 = −2

NAVY – Neural networks

Training

𝑥

𝑦 y = 2x + 3

0

• Weights recalculation

𝑤𝑖
𝑛𝑒𝑤 = 𝑤𝑖 + 𝐸𝑟𝑟𝑜𝑟 ∗ 𝑖𝑛𝑝𝑢𝑡 ∗ 𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔_𝑟𝑎𝑡𝑒

• Learning rate:
• Usually small real number (e.g. 0.1)
• Used to slow down the exploration

• For the point 𝐴[1,2]:
𝑤1
𝑛𝑒𝑤 = 0.2 + 1 ∗ −2 ∗ 0.1 = 0

𝑤2
𝑛𝑒𝑤 = 0.4 + 2 ∗ −2 ∗ 0.1 = 0
𝑏𝑛𝑒𝑤 = 0.5 + −2 ∗ 0.1 = 0.3

•

NAVY – Neural networks

Why do we need bias?

• Without the bias, the perceptron will train over point passing through origin [1]

Without bias With bias

NAVY – Neural networks

Linear unseparable problems

• Data cannot be divided by the line

• Perceptron can solve the linear separable problem → it cannot be used to solve
linearly unseparable problem

• Typical example: XOR problem

𝒙𝟏 𝒙𝟐 𝑿𝑶𝑹

0 0 0

0 1 1

1 0 1

1 1 0

𝑥2

𝑥1

1

10

NAVY – Neural networks

Linear unseparable problems
More nodes in the network

• We must add nodes to our network

Input layer hidden layer output layer

𝑥1

𝑥2

𝑤1

𝑤2

𝑤3

𝑤4

𝑤5

𝑤6

𝑏1

𝑏2

𝑦𝑔𝑢𝑒𝑠𝑠

𝑏3

NAVY – Neural networks

Linear unseparable problems
Weights of hidden and output layer

𝑊𝐻

𝑥1

𝑥2

𝑤1

𝑤2

𝑤3

𝑤4

𝑤5

𝑤6

𝑏1

𝑏2

𝑦𝑔𝑢𝑒𝑠𝑠

𝑏3

𝑊𝑂

NAVY – Neural networks

Square error loss and gradient descent

• The difference between expected and correct output can be miselading:
• For the same amout of error it provides the different values, e.g. consider

the difference between 0 and 1 and 0 and -1. The amout is the same,
however, the errors will be different. Therefore, we will use the square
error [2]:

• There are usually many weights influencing the error value, therefore, the
partial derivatives are used to find the minimum error with respect to each
weight [2].

𝐸𝑟𝑟𝑜𝑟 =
1

2
𝑦 − 𝑦𝑔𝑢𝑒𝑠𝑠

2

NAVY – Neural networks

Gradient, derivative, partial derivative

• Gradient – „The gradient is a vector pointing in the direction of the steepest
ascent. Its elements are all the partial derivatives of 𝑓 with respect to each of
the predictor variables. The direction of 𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡(𝑓) is the orientation in
which the directional derivative has the maximum value. “ [3]

• Derivative – change rate (slope of a function) – „how fast something is
changing (called the rate of change) at any given point. “[3]

• Partial derivative – for multivariate functions, to get the slope of a function at
a given point [3]

• Gradient descent – „Gradient descent search determines a weight vector (𝑤)
that minimizes error 𝐸 by starting with some arbitrary initial weight vector and
gradually and repeatedly modifies it in small steps.“ [3]

NAVY – Neural networks

Example

𝑖1

𝑖2

𝑤1

𝑤2

𝑤3

𝑤4

𝑏1 𝑏2

𝑤5

𝑤6

𝑤7

𝑤8

𝑜1

𝑜2

ℎ1

ℎ2

Inputs
• 𝑖1 = 0.05, 𝑖2 = 0.10

Weights – hidden layer
• 𝑤1 = 0.15,𝑤2 = 0.20,𝑤3 =

0.25,𝑤4 = 0.30

Weights – output layer
• 𝑤5 = 0.40,𝑤6 = 0.45,𝑤7 =

0.50,𝑤8 = 0.55

Biases:
• 𝑏1 = 0.35, 𝑏2 = 0.60

Expected outputs:
• 𝑜1 = 0.01, o2 = 0.99

This example was taken from [3]

NAVY – Neural networks

Example
Notation

output ℎ1

output ℎ2

1

𝑤5

𝑤6

𝑏2

𝑛𝑒𝑡𝑜1 𝑜𝑢𝑡𝑜1

𝐸𝑜1 =
1

2
𝑡𝑎𝑟𝑔𝑒𝑡𝑜1 − 𝑜𝑢𝑡𝑜1

2

𝑛𝑒𝑡𝑜1 = 𝑜𝑢𝑡ℎ1 ∗ 𝑤5 + 𝑜𝑢𝑡ℎ2 ∗ 𝑤6 + 𝑏2

𝑜𝑢𝑡𝑜1 =
𝑒𝑛𝑒𝑡𝑜1

𝑒𝑛𝑒𝑡𝑜1 + 1

𝑛𝑒𝑡 = ෍𝑥𝑖 ∗ 𝑤𝑖 + 𝑏

𝑜𝑢𝑡 =
𝑒𝑛𝑒𝑡

𝑒𝑛𝑒𝑡 + 1

This example was taken from [3]

NAVY – Neural networks

Example
Feedforward

𝑛𝑒𝑡ℎ1 = 𝑤1 ∗ 𝑖1 + 𝑤2 ∗ 𝑖2 + 𝑏1 ∗ 1 = 0.3775 𝑜𝑢𝑡ℎ1 =
1

1 + 𝑒−𝑛𝑒𝑡ℎ1
= 0.593269992

𝑜𝑢𝑡ℎ2 = 0.56884378

𝑛𝑒𝑡𝑜1 = 𝑤5 ∗ 𝑜𝑢𝑡ℎ1 + 𝑤6 ∗ 𝑜𝑢𝑡ℎ2 + 𝑏2 ∗ 1 = 1.105905967

𝑜𝑢𝑡𝑜1 =
1

1 + 𝑒−𝑛𝑒𝑡𝑜1
= 0.75136507

𝑜𝑢𝑡𝑜2 = 0.772928465

This example was taken from [3]

NAVY – Neural networks

Example
Total error calculation

𝐸𝑡𝑜𝑡𝑎𝑙 = ෍
1

2
𝑡𝑎𝑟𝑔𝑒𝑡 − 𝑜𝑢𝑡𝑝𝑢𝑡 2

𝐸𝑜1 =
1

2
𝑡𝑎𝑟𝑔𝑒𝑡𝑜1 − 𝑜𝑢𝑡𝑜1

2
=

1

2 0.01 − 0.75136507 2 = 0.274811083

𝐸𝑜2 = 0.023560026

𝐸𝑡𝑜𝑡𝑎𝑙 = 𝐸𝑜1 + 𝐸𝑜2 = 0.298371109

This example was taken from [3]

NAVY – Neural networks

Example
Total error calculation

𝑖1

𝑖2

𝑤1

𝑤2

𝑤3

𝑤4

𝑏1 𝑏2

𝑤5

𝑤6

𝑤7

𝑤8

𝑜1

𝑜2

ℎ1

ℎ2

• How much a change of the
weights influences the total error?

• Consider the weight 𝑤5

• The influence of 𝑤5on the total
error:

𝜕𝐸𝑡𝑜𝑡𝑎𝑙
𝜕𝑤5

This example was taken from [3]

NAVY – Neural networks

Example
Chain rule

• What do we know?

𝑛𝑒𝑡ℎ1 = 0.3775

𝑜𝑢𝑡ℎ2 = 0.56884378

𝑛𝑒𝑡𝑜1 = 1.105905967 𝑜𝑢𝑡𝑜1 = 0.75136507

𝑜𝑢𝑡𝑜2 = 0.772928465

𝑜𝑢𝑡ℎ1 = 0.593269992 𝐸𝑜1 = 0.274811083

𝐸𝑜2 = 0.023560026

𝐸𝑡𝑜𝑡𝑎𝑙 = 0.298371109

• We need calculate:

𝜕𝐸𝑡𝑜𝑡𝑎𝑙
𝜕𝑤5

• How to calculate:

𝜕𝐸𝑡𝑜𝑡𝑎𝑙
𝜕𝑤5

=
𝜕𝐸𝑡𝑜𝑡𝑎𝑙
𝜕𝑜𝑢𝑡𝑜1

∗
𝜕𝑜𝑢𝑡𝑜1
𝜕𝑛𝑒𝑡𝑜1

∗
𝜕𝑛𝑒𝑡𝑜1
𝜕𝑤5

This example was taken from [3]

NAVY – Neural networks

Example
Chain rule

• We need calculate:

𝜕𝐸𝑡𝑜𝑡𝑎𝑙
𝜕𝑤5

• How to calculate:

𝜕𝐸𝑡𝑜𝑡𝑎𝑙
𝜕𝑤5

=
𝜕𝐸𝑡𝑜𝑡𝑎𝑙
𝜕𝑜𝑢𝑡𝑜1

∗
𝜕𝑜𝑢𝑡𝑜1
𝜕𝑛𝑒𝑡𝑜1

∗
𝜕𝑛𝑒𝑡𝑜1
𝜕𝑤5

𝐸𝑡𝑜𝑡𝑎𝑙 =
1

2
𝑡𝑎𝑟𝑔𝑒𝑡𝑜1 − 𝑜𝑢𝑡𝑜1

2
+
1

2
𝑡𝑎𝑟𝑔𝑒𝑡𝑜2 − 𝑜𝑢𝑡𝑜2

2 𝜕𝐸𝑡𝑜𝑡𝑎𝑙
𝜕𝑜𝑢𝑡𝑜1

= 0.74136507

outo1 =
1

1 + 𝑒−𝑛𝑒𝑡𝑜1

𝜕𝑜𝑢𝑡𝑜1
𝜕𝑛𝑒𝑡𝑜1

= 0.186815602

𝑛𝑒𝑡𝑜1 = 𝑤5 ∗ 𝑜𝑢𝑡ℎ1 + 𝑤6 ∗ 𝑜𝑢𝑡ℎ2 + 𝑏2 ∗ 1
𝜕𝑛𝑒𝑡𝑜1
𝜕𝑤5

= 0.593269992

This example was taken from [3]

NAVY – Neural networks

Example
Chain rule

𝜕𝐸𝑡𝑜𝑡𝑎𝑙
𝜕𝑤5

=
𝜕𝐸𝑡𝑜𝑡𝑎𝑙
𝜕𝑜𝑢𝑡𝑜1

∗
𝜕𝑜𝑢𝑡𝑜1
𝜕𝑛𝑒𝑡𝑜1

∗
𝜕𝑛𝑒𝑡𝑜1
𝜕𝑤5

𝜕𝐸𝑡𝑜𝑡𝑎𝑙
𝜕𝑜𝑢𝑡𝑜1

= 0.74136507
𝜕𝑜𝑢𝑡𝑜1
𝜕𝑛𝑒𝑡𝑜1

= 0.186815602
𝜕𝑛𝑒𝑡𝑜1
𝜕𝑤5

= 0.593269992

𝜕𝐸𝑡𝑜𝑡𝑎𝑙
𝜕𝑤5

= 0.74136507 ∗ 0.186815602 ∗ 0.593269992 = 0.082167041

This example was taken from [3]

NAVY – Neural networks

Example
Weight recalculation

𝑤5
+ = 𝑤5 − 𝜂 ∗

𝜕𝐸𝑡𝑜𝑡𝑎𝑙
𝜕𝑤5

learning constant

𝑤5
+ = 0.4 − 0.5 ∗ 0.082167041 = 0.35891648

𝑤6
+ = 0.408666186

𝑤7
+ = 0.511301270

𝑤8
+ = 0.561370121

• The other weights are calculate by the same way:

This example was taken from [3]

NAVY – Neural networks

Example
Weights of hidden layer

This example was taken from [3]

𝜕𝐸𝑡𝑜𝑡𝑎𝑙
𝜕𝑤1

=
𝜕𝐸𝑡𝑜𝑡𝑎𝑙
𝜕𝑜𝑢𝑡ℎ1

∗
𝜕𝑜𝑢𝑡ℎ1
𝜕𝑛𝑒𝑡ℎ1

∗
𝜕𝑛𝑒𝑡ℎ1
𝜕𝑤1

𝜕𝐸𝑡𝑜𝑡𝑎𝑙
𝜕𝑜𝑢𝑡ℎ1

=
𝜕𝐸𝑜1
𝜕𝑜𝑢𝑡ℎ1

+
𝜕𝐸𝑜2
𝜕𝑜𝑢𝑡ℎ1

𝜕𝐸𝑜1
𝜕𝑜𝑢𝑡ℎ1

=
𝜕𝐸𝑜1
𝜕𝑛𝑒𝑡𝑜1

∗
𝜕𝑛𝑒𝑡𝑜1
𝜕𝑜𝑢𝑡ℎ1

𝜕𝐸𝑜1
𝜕𝑛𝑒𝑡𝑜1

=
𝜕𝐸𝑜1
𝜕𝑜𝑢𝑡𝑜1

∗
𝜕𝑜𝑢𝑡𝑜1
𝜕𝑛𝑒𝑡𝑜1

NAVY – Neural networks

Example
Weights of hidden layer

This example was taken from [3]

𝜕𝐸𝑜1
𝜕𝑛𝑒𝑡𝑜1

=
𝜕𝐸𝑜1
𝜕𝑜𝑢𝑡𝑜1

∗
𝜕𝑜𝑢𝑡𝑜1
𝜕𝑛𝑒𝑡𝑜1

= 0.74136507 ∗ 0.186815602 = 0.138498562

𝑛𝑒𝑡𝑜1 = 𝑤5 ∗ 𝑜𝑢𝑡ℎ1 + 𝑤6 ∗ 𝑜𝑢𝑡ℎ2 + 𝑏2 ∗ 1
𝜕𝑛𝑒𝑡𝑜1
𝜕𝑜𝑢𝑡ℎ1

= 𝑤5 = 0.40

𝜕𝐸𝑜1
𝜕𝑜𝑢𝑡ℎ1

=
𝜕𝐸𝑜1
𝜕𝑛𝑒𝑡𝑜1

∗
𝜕𝑛𝑒𝑡𝑜1
𝜕𝑜𝑢𝑡ℎ1

= 0.138498562 ∗ 0.40 = 0.055399425

• We will use the same way to calculate
𝜕𝐸𝑜2
𝜕𝑜𝑢𝑡ℎ1

:

𝜕𝐸𝑜2
𝜕𝑜𝑢𝑡ℎ1

= −0.019049119

NAVY – Neural networks

Example
Weights of hidden layer

This example was taken from [3]

𝜕𝐸𝑡𝑜𝑡𝑎𝑙
𝜕𝑜𝑢𝑡ℎ1

=
𝜕𝐸𝑜1
𝜕𝑜𝑢𝑡ℎ1

+
𝜕𝐸𝑜2
𝜕𝑜𝑢𝑡ℎ1

= 0.055399425 + −0.019049119 = 0.036350306

NAVY – Neural networks

Example
Weights of hidden layer

This example was taken from [3]

𝜕𝐸𝑡𝑜𝑡𝑎𝑙
𝜕𝑜𝑢𝑡ℎ1

=
𝜕𝐸𝑜1
𝜕𝑜𝑢𝑡ℎ1

+
𝜕𝐸𝑜1
𝜕𝑜𝑢𝑡ℎ1

= 0.055399425 + −0.019049119 = 0.036350306

• We need to calculate
𝜕𝑜𝑢𝑡ℎ1
𝜕𝑛𝑒𝑡ℎ1

and
𝜕𝑛𝑒𝑡ℎ1
𝜕𝑤

for each weight:

𝜕𝐸𝑡𝑜𝑡𝑎𝑙
𝜕𝑤1

=
𝜕𝐸𝑡𝑜𝑡𝑎𝑙
𝜕𝑜𝑢𝑡ℎ1

∗
𝜕𝑜𝑢𝑡ℎ1
𝜕𝑛𝑒𝑡ℎ1

∗
𝜕𝑛𝑒𝑡ℎ1
𝜕𝑤1

𝜕𝑜𝑢𝑡ℎ1
𝜕𝑛𝑒𝑡ℎ1

= 0.241300709
𝜕𝑛𝑒𝑡ℎ1
𝜕𝑤1

= 0.05and

NAVY – Neural networks

Example
Weights of hidden layer

This example was taken from [3]

𝜕𝐸𝑡𝑜𝑡𝑎𝑙
𝜕𝑤1

=
𝜕𝐸𝑡𝑜𝑡𝑎𝑙
𝜕𝑜𝑢𝑡ℎ1

∗
𝜕𝑜𝑢𝑡ℎ1
𝜕𝑛𝑒𝑡ℎ1

∗
𝜕𝑛𝑒𝑡ℎ1
𝜕𝑤1

= 0.036350306 ∗ 0.241300709 ∗ 0.05

= 0.000438568

• Update of 𝑤1:

𝑤1
+ = 𝑤1 − 𝜂 ∗

𝜕𝐸𝑡𝑜𝑡𝑎𝑙
𝜕𝑤1

= 0.15 − 0.5 ∗ 0.000438568 = 0.149780716

• Update of the other weights:

𝑤2
+ = 0.19956143 𝑤3

+ = 0.24975114 𝑤3
+ = 0,29950229

NAVY – Neural networks

XOR problem
Implementation

𝑤𝑒𝑖𝑔ℎ𝑡𝑠_𝐻

𝑥1

𝑥2

𝑤1

𝑤2

𝑤3

𝑤4

𝑤5

𝑤6

𝑏1

𝑏2

𝑦𝑔𝑢𝑒𝑠𝑠

𝑏3

𝑤𝑒𝑖𝑔ℎ𝑡𝑠_𝑂
• Inputs can be described by a

vector: 𝑖𝑛𝑝𝑢𝑡𝑠

0,0,1 , 0,1,1 , 1,0,1 , [1,1,1]

• Weights of hidden layer by a
vector: 𝑤𝑒𝑖𝑔ℎ𝑡𝑠_𝐻

• Weights of output layer by a
vector: 𝑤𝑒𝑖𝑔ℎ𝑡𝑠_𝑂

• Target outputs:

0 , 1 , 1 , [0]

𝑖𝑛
𝑝
𝑢
𝑡𝑠

NAVY – Neural networks

XOR problem
Implementation

𝑥1

𝑥2

𝑤1

𝑤2

𝑤3

𝑤4

𝑤5

𝑤6

𝑏1

𝑏2

𝑦𝑔𝑢𝑒𝑠𝑠

𝑏3

• Outputs of the hidden layer can be
represented by a vector: 𝑜𝑢𝑡_𝐻

• Output of a output layer by a
vector: 𝑜𝑢𝑡_𝑂

• Error as :𝑒𝑟𝑟𝑜𝑟

• Activation function: 𝑠𝑖𝑔𝑚𝑜𝑖𝑑

• Derivation of activation function:
𝑠𝑖𝑔𝑚𝑜𝑖𝑑_

𝑜𝑢𝑡_𝐻

𝑜𝑢𝑡_𝑂

NAVY – Neural networks

XOR problem
Implementation

𝑥1

𝑥2

𝑤1

𝑤2

𝑤3

𝑤4

𝑤5

𝑤6

𝑏1

𝑏2

𝑦𝑔𝑢𝑒𝑠𝑠

𝑏3
𝑜𝑢𝑡_𝑂=sigm(σ𝑜𝑢𝑡_𝐻 ∗ 𝑤𝑒𝑖𝑔ℎ𝑡𝑠_𝑂)

𝑜𝑢𝑡_𝐻=𝑠𝑖𝑔𝑚(σ 𝑖𝑛𝑝𝑢𝑡𝑠 ∗ 𝑤𝑒𝑖𝑔ℎ𝑡𝑠_𝐻)

∆𝑂 = 𝑒𝑟𝑟𝑜𝑟 ∗ 𝑠𝑖𝑔𝑚𝑜𝑖𝑑_(𝑜𝑢𝑡_𝑂)

∆𝐻 = ∆𝑂 ∗ (𝑤𝑒𝑖𝑔ℎ𝑡𝑠_𝑂). 𝑇 ∗ 𝑠𝑖𝑔𝑚𝑜𝑖𝑑_(𝑜𝑢𝑡_𝐻)

NAVY – Neural networks

XOR problem
Implementation

𝑤𝑒𝑖𝑔ℎ𝑡𝑠_𝑂 = 𝑤𝑒𝑖𝑔ℎ𝑡𝑠_𝑂 + 𝑜𝑢𝑡_𝐻*∆𝑂

𝑤𝑒𝑖𝑔ℎ𝑡𝑠_𝐻 = 𝑤𝑒𝑖𝑔ℎ𝑡𝑠_𝐻 +𝑖𝑛𝑝𝑢𝑡. 𝑇*∆𝐻

𝑥1

𝑥2

𝑤1

𝑤2

𝑤3

𝑤4

𝑤5

𝑤6

𝑏1

𝑏2

𝑦𝑔𝑢𝑒𝑠𝑠

𝑏3

NAVY – Neural networks

Literature

[1] https://www.geeksforgeeks.org/effect-of-bias-in-neural-network/
[2] https://towardsdatascience.com/implementing-the-xor-gate-using-
backpropagation-in-neural-networks-c1f255b4f20d
[3] https://blog.clairvoyantsoft.com/the-ascent-of-gradient-descent-23356390836f
https://mattmazur.com/2015/03/17/a-step-by-step-backpropagation-example/

NAVY – Neural networks

https://www.geeksforgeeks.org/effect-of-bias-in-neural-network/
https://towardsdatascience.com/implementing-the-xor-gate-using-backpropagation-in-neural-networks-c1f255b4f20d
https://blog.clairvoyantsoft.com/the-ascent-of-gradient-descent-23356390836f
https://mattmazur.com/2015/03/17/a-step-by-step-backpropagation-example/

